Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36840150

RESUMO

We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree species in tropical planted forests.

2.
Sci Total Environ ; 795: 148934, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328927

RESUMO

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation. In each agroecosystem, we tested several plant communities for diversification, as compared to a matching low diversity management for their cropping system. Plant residue restitution, N, P and lignin contents were measured for each plant community. In parallel, the soil under each community was analyzed for organic C and N, inorganic N, Olsen P, soil pH and nematode community composition. Soil potential fertility was assessed with plant bioassays under greenhouse controlled climatic conditions. Overall, plant diversification had a positive effect on soil fertility across all sites, with contrasting effects depending on soil type and legumes presence in the community. Communities with legumes improved soil fertility indicators of volcanic soils, which was demonstrated through significantly higher plant biomass production in the bioassays (+18%) and soil inorganic N (+26%) compared to the low diversity management. Contrastingly, communities without legumes were the most beneficial in Ferralsols, with increases in plant biomass production in the bioassays (+39%), soil Olsen P (+46%), soil C (+26%), and pH (+5%). Piecewise structural equation models with Shipley's test revealed that plant diversification impacts on volcanic soil fertility were related to soil N availability, driven by litter N. Meanwhile, Ferralsols fertility was related to soil P availability, driven by litter P. These findings underline the importance of multifactorial and multi-sites experiments to inform trait-based frameworks used in designing optimal plant diversification in agroecological systems.


Assuntos
Fabaceae , Nematoides , Animais , Biomassa , Solo , Microbiologia do Solo
3.
Sci Total Environ ; 742: 140535, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721724

RESUMO

Many studies have shown that introducing N2-fixing trees (e.g. Acacia mangium) in eucalypt plantations can increase soil N availability as a result of biological N2 fixation and faster N cycling. Some studies have also shown improved eucalypt P nutrition. However, the effects of N2-fixing trees on P cycling in tropical soils remain poorly understood and site-dependent. Our study aimed to assess the effects of planting A. mangium trees in areas managed over several decades with eucalypt plantations on soil organic P (Po) forms and low molecular weight organic acids (LMWOAs). Soil samples were collected from two tropical sites, one in Brazil and one in the Congo. Five different treatments were sampled at each site: monospecific acacia, monospecific eucalypt, below acacias in mixed-species, below eucalypts in mixed-species as well as native vegetation. Po forms and LMWOAs were identified in sodium hydroxide soil extracts using ion chromatography and relationships between these data and available P were determined. At both sites, the concentrations of most Po forms and LMWOAs were different between native ecosystems and monospecific eucalypt and acacia plots. Also, patterns of Po and LMWOAs were clearly separated, with glucose-6-P found mainly under acacia and phytate and oxalate mainly under eucalypt. Despite the strongest changes occurred at site with a higher N2 fixation and root development, acacia introduction was able to change the profile of organic P and LMWOAs in <10 years. The variations between available Pi, Po and LMWOA forms showed that P cycling was dominated by different processes at each site, that are rather physicochemical (via Pi desorption after LMWOAs release) at Itatinga and biological (via organic P mineralization) at Kissoko. Specific patterns of Po and LMWOAs forms found in soil sampled under acacia or eucalypt would therefore explain the effect of acacia introduction in both sites.


Assuntos
Acacia , Árvores , Brasil , Ecossistema , Peso Molecular , Solo
4.
Sci Total Environ ; 649: 1065-1074, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308878

RESUMO

Conventional, intensively managed coffee plantations are currently facing environmental challenges. The use of shade trees and the organic management of coffee crops are welcome alternatives, aiming to reduce synthetic inputs and restore soil biological balance. However, little is known about the impacts of the different types of shade tree species on soil functioning and fauna. In this paper, we assess soil nutrient availability and food web structure on a 17-year old experimental coffee plantation in Turrialba in Costa Rica. Three shade types (unshaded coffee, shaded with Terminalia amazonia, and shaded with Erythrina poepiggiana) combined with two management practices (organic and conventional) were evaluated. Total C and N, inorganic N and Olsen P content, soil pH, global soil fertility, and nematode and microarthropod communities were measured in the top 10 cm soil layer, with the objective of determining how shade tree species impact the soil food web and soil C, N and P cycling under different types of management. We noted a decrease in soil inorganic N content and nematode density under conventional management (respectively -47% and -91% compared to organic management), which suggested an important biological imbalance, possibly caused by the lack of organic amendment. Under conventional management, soil nutrient availability and fauna densities were higher under shade, regardless of the shade tree species. Under organic management, only soils under E. poeppigiana, a heavily pruned, N2-fixing species, had increased nutrient availability and fauna density, while T. amazonia shade had a null or negative impact. The effects of coffee management and shade type on soil nutrient availability were mirrored by changes in soil food web structure. Higher fertility was recorded in soil with balanced food webs. These results emphasize the importance of the choice of shade tree species for soil functions in low input systems, more so than in fertilized systems.


Assuntos
Coffea/crescimento & desenvolvimento , Cadeia Alimentar , Agricultura Florestal , Agricultura Orgânica , Solo/química , Árvores/metabolismo , Ciclo do Carbono , Costa Rica , Ciclo do Nitrogênio , Fósforo/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...